Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 959
Filtrar
1.
Biomed Pharmacother ; 143: 112149, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34507120

RESUMO

Age-related hearing loss (AHL) is the most common sensory disorder of aged population. Currently, one of the most important sources of experimental medicine for AHL is medicinal plants. This study performed the first investigation of the effect of thymoquinone (TQ), a potent antioxidant, on AHL. Here, we used inbred C57BL/6J mice (B6 mice) as a successful experimental model of the early onset of AHL. The behavioral assessment of hearing revealed that the injection of a high dose of TQ (40 mg/kg; TQ40) significantly improved the auditory sensitivity of B6 mice at all tested frequencies (8, 16 and 22 kHz). Histological sections of cochlea from B6 mice injected with a low dose (20 mg/kg; TQ20) and high dose showed relatively less degenerative signs in the modiolus, hair cells and spiral ligaments, the main constituents of the cochlea. In addition, TQ40 completely restored the normal pattern of hair cells in B6 mice, as shown in scanning electron micrographs. Our data indicated that TQ20 and TQ40 reduced levels of Bak1-mediated apoptosis in the cochlea of B6 mice. Interestingly, the level of Sirt1, a positive regulator of autophagy, was significantly increased in B6 mice administered TQ40. In conclusion, TQ relieves the symptoms of AHL by downregulating Bak1 and activating Sirt1 in the cochlea of B6 mice.


Assuntos
Antioxidantes/farmacologia , Benzoquinonas/farmacologia , Cóclea/efeitos dos fármacos , Audição/efeitos dos fármacos , Presbiacusia/tratamento farmacológico , Sirtuína 1/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Limiar Auditivo/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cóclea/metabolismo , Cóclea/fisiopatologia , Cóclea/ultraestrutura , Modelos Animais de Doenças , Feminino , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/ultraestrutura , Camundongos Endogâmicos C57BL , Presbiacusia/metabolismo , Presbiacusia/patologia , Presbiacusia/fisiopatologia , Transdução de Sinais , Sirtuína 1/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética
2.
Genesis ; 59(9): e23442, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34402594

RESUMO

Atoh8, also named Math6, is a bHLH gene reported to have important functions in the developing nervous system, pancreas and kidney. However, the expression pattern and function of Atoh8 in the inner ear are still unclear. To study the function of Atoh8 in the developing mouse inner ear, we performed targeted deletion of Atoh8 by intercrossing Atoh8lacZ/+ mice. We studied the expression pattern of Atoh8 in the inner ear and found interesting results that Atoh8-null (Atoh8lacZ/lacZ ) mice were viable but smaller than their littermates and they were severely hearing impaired, which was confirmed by hearing tests (ABR, DPOAE). We collected 129 viable newborns from 18 litters by crossing Atoh8lacZ/+ mice and found that the distributions of Atoh8lacZ/+ , Atoh8lacZ/lacZ and wild type were very close to their expected Mendelian ratio by χ2 testing. However, no remarkable morphological changes in cochleae in mutant mice were detected under plastic sectioning and electron microscopy. No remarkable differences in the expression of Myosin6, Prestin, TrkC, GAD65, Tuj1, or Calretinin were detected between the mutant mice and the control mice. These findings indicate that Atoh8 plays an important role in the development of normal hearing, while further studies are required to elucidate its exact function in hearing.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Perda Auditiva/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cóclea/metabolismo , Cóclea/ultraestrutura , Potenciais Evocados Auditivos do Tronco Encefálico , Deleção de Genes , Perda Auditiva/metabolismo , Perda Auditiva/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL
4.
STAR Protoc ; 2(2): 100515, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34027478

RESUMO

This protocol describes how to prepare intact mouse cochleae for serial block-face scanning electron microscopy (SBEM). The detailed workflow includes cochlea fixation, en bloc staining, resin embedding, X-ray microscopy-guided trimming and SBEM data acquisition. This protocol allows large-scale, nanometer-resolution three-dimensional imaging of subcellular structures in a targeted tonotopic range of the cochlea and enables fast volumetric scan at submicron resolution using a compact X-ray microscope. For complete details on the use and execution of this protocol, please refer to Hua et al. (2021).


Assuntos
Cóclea/ultraestrutura , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Microtomia , Animais , Camundongos
5.
J Otolaryngol Head Neck Surg ; 50(1): 23, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33810814

RESUMO

INTRODUCTION: Ultrasonic bone removal devices (UBD) are capable of cutting through bony tissue without injury to adjacent soft tissue. The feasibility and safety of using this technology for removal of bone from an intact ossicular chain (as might be required for otosclerosis or congenital fixation) was investigated in an animal model. METHODS: This was a prospective animal study conducted on seven anesthetised adult chinchillas. An UBD was used to remove bone from the malleus head in situ. Pre and post-operative distortion product otoacoustic emission (DPOAE) levels and auditory brainstem response (ABR) thresholds were recorded. Scanning electron microscopy (SEM) was used to assess cochlear haircell integrity. RESULTS: Precise removal of a small quantity of bone from the malleus head was achieved by a 30s application of UBD without disruption of the ossicular chain or tympanic membrane. DPOAEs became undetectable after the intervention with signal-to-noise ratios (SNR) < 5 dB SPL in all ears. Furthermore, ABR thresholds were elevated > 85 dB SPL in 13 ears. SEM showed significant disruption of structural integrity of the organ of Corti, specifically loss and damage of outer haircells. CONCLUSIONS: Although UBD can be used to reshape an ossicle without middle ear injury, prolonged contact with the ossicular chain can cause structural and functional injury to the cochlea. Extensive cochlea pathology was found, but we did not investigate for recovery from any temporary threshold shift. In the authors' opinion, further study should be undertaken before consideration is given to use of the device for release of ossicular fixation.


Assuntos
Cóclea/lesões , Ossículos da Orelha/cirurgia , Procedimentos Cirúrgicos Ultrassônicos/efeitos adversos , Animais , Chinchila , Cóclea/fisiologia , Cóclea/ultraestrutura , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Microscopia Eletrônica de Varredura , Modelos Animais , Emissões Otoacústicas Espontâneas/fisiologia , Otosclerose/cirurgia , Estudos Prospectivos , Procedimentos Cirúrgicos Ultrassônicos/instrumentação
6.
J Comp Neurol ; 529(11): 2958-2969, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33719053

RESUMO

In mammalian cochlea, sound-induced vibration is amplified by a three-row lattice of Y-shaped microstructures consisting of electromotile outer hair cell and supporting Deiters cell. This highly organized structure is thought to be essential for hearing of low-level sounds. Prior studies reported differences in geometry and synaptic innervation of the outer hair cells between rows, but how these fine features are achieved at subcellular level still remains unclear. Using serial block-face electron microscopy, we acquired few-hundred-micron-sized cytoarchitecture of mouse organ of Corti at nanometer resolution. Structural quantifications were performed on the Y-shapes as well as afferent and efferent projections to outer hair cells (OHCs). Several new features, which support the previously observed inter-row heterogeneity, are described. Our result provides structural bases for the gradient of mechanical properties and diverse centrifugal regulation of OHC rows.


Assuntos
Cóclea/inervação , Cóclea/ultraestrutura , Células Ciliadas Auditivas Externas/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Animais , Cóclea/fisiologia , Feminino , Células Ciliadas Auditivas Externas/fisiologia , Camundongos , Camundongos Endogâmicos CBA
7.
J Comp Neurol ; 529(11): 2995-3012, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33754334

RESUMO

Auditory efferents originate in the central auditory system and project to the cochlea. Although the specific anatomy of the olivocochlear (OC) efferents can vary between species, two types of auditory efferents have been identified based upon the general location of their cell bodies and their distinctly different axon terminations in the organ of Corti. In the mouse, the relatively small somata of the lateral (LOC) efferents reside in the lateral superior olive (LSO), have unmyelinated axons, and terminate around ipsilateral inner hair cells (IHCs), primarily against the afferent processes of type I auditory nerve fibers. In contrast, the larger somata of the medial (MOC) efferents are distributed in the ventral nucleus of the trapezoid body (VNTB), have myelinated axons, and terminate bilaterally against the base of multiple outer hair cells (OHCs). Using in vivo retrograde cell body marking, anterograde axon tracing, immunohistochemistry, and electron microscopy, we have identified a group of efferent neurons in mouse, whose cell bodies reside in the ventral nucleus of the lateral lemniscus (VNLL). By virtue of their location, we call them dorsal efferent (DE) neurons. Labeled DE cells were immuno-negative for tyrosine hydroxylase, glycine, and GABA, but immuno-positive for choline acetyltransferase. Morphologically, DEs resembled LOC efferents by their small somata, unmyelinated axons, and ipsilateral projection to IHCs. These three classes of efferent neurons all project axons directly to the cochlea and exhibit cholinergic staining characteristics. The challenge is to discover the contributions of this new population of neurons to auditory efferent function.


Assuntos
Vias Auditivas/fisiologia , Cóclea/fisiologia , Neurônios Eferentes/fisiologia , Corpo Trapezoide/fisiologia , Animais , Vias Auditivas/ultraestrutura , Cóclea/ultraestrutura , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Neurônios Eferentes/ultraestrutura , Órgão Espiral/fisiologia , Órgão Espiral/ultraestrutura , Corpo Trapezoide/ultraestrutura
9.
J Assoc Res Otolaryngol ; 21(5): 425-444, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32909111

RESUMO

Morphometric analysis of the inner ear of mammals can provide information for cochlear frequency mapping, a species-specific designation of locations in the cochlea at which different sound frequencies are encoded. Morphometric variation occurs in the hair cells of the organ of Corti along the cochlea, with the base encoding the highest frequency sounds and the apex encoding the lowest frequencies. Changes in cell shape and spacing can yield additional information about the biophysical basis of cochlear tuning mechanisms. Here, we investigate how morphometric analysis of hair cells in mammals can be used to predict the relationship between frequency and cochlear location. We used linear and geometric morphometrics to analyze scanning electron micrographs of the hair cells of the cochleae in Parnell's mustached bat (Pteronotus parnellii) and Wistar rat (Rattus norvegicus) and determined a relationship between cochlear morphometrics and their frequency map. Sixteen of twenty-two of the morphometric parameters analyzed showed a significant change along the cochlea, including the distance between the rows of hair cells, outer hair cell width, and gap width between hair cells. A multiple linear regression model revealed that nine of these parameters are responsible for 86.9 % of the variation in these morphometric data. Determining the most biologically relevant measurements related to frequency detection can give us a greater understanding of the essential biomechanical characteristics for frequency selectivity during sound transduction in a diversity of animals.


Assuntos
Quirópteros/anatomia & histologia , Cóclea/ultraestrutura , Audição/fisiologia , Animais , Biometria , Quirópteros/fisiologia , Cóclea/fisiologia , Feminino , Masculino , Ratos
10.
Hear Res ; 392: 107973, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32402894

RESUMO

Rodent models of audiogenic seizures, in which seizures are precipitated by an abnormal response of the brain to auditory stimuli, are crucial to investigate the neural bases underlying ictogenesis. Despite significant advances in understanding seizure generation in the inferior colliculus, namely the epileptogenic nucleus, little is known about the contribution of lower auditory stations to the seizure-prone network. Here, we examined the cochlea and cochlear nucleus of the genetic audiogenic seizure hamster from Salamanca (GASH/Sal), a model of reflex epilepsy that exhibits generalized tonic-clonic seizures in response to loud sound. GASH/Sal animals under seizure-free conditions were compared with matched control hamsters in a multi-technical approach that includes auditory brainstem responses (ABR) testing, histology, scanning electron microscopy analysis, immunohistochemistry, quantitative morphometry and gene expression analysis (RT-qPCR). The cochlear histopathology of the GASH/Sal showed preservation of the sensory hair cells, but a significant loss of spiral ganglion neurons and mild atrophy of the stria vascularis. At the electron microscopy level, the reticular lamina exhibited disarray of stereociliary tufts with blebs, loss or elongated stereocilia as well as non-parallel rows of outer hair cells due to protrusions of Deiters' cells. At the molecular level, the abnormal gene expression patterns of prestin, cadherin 23, protocadherin 15, vesicular glutamate transporters 1 (Vglut1) and -2 (Vglut2) indicated that the hair-cell mechanotransduction and cochlear amplification were markedly altered. These were manifestations of a cochlear neuropathy that correlated to ABR waveform I alterations and elevated auditory thresholds. In the cochlear nucleus, the distribution of VGLUT2-immunolabeled puncta was differently affected in each subdivision, showing significant increases in magnocellular regions of the ventral cochlear nucleus and drastic reductions in the granule cell domain. This modified inputs lead to disruption of Vglut1 and Vglut2 gene expression in the cochlear nucleus. In sum, our study provides insight into the morphological and molecular traits associated with audiogenic seizure susceptibility in the GASH/Sal, suggesting an upward spread of abnormal glutamatergic transmission throughout the primary acoustic pathway to the epileptogenic region.


Assuntos
Limiar Auditivo , Comportamento Animal , Cóclea/fisiopatologia , Epilepsia Reflexa/fisiopatologia , Epilepsia Tônico-Clônica/fisiopatologia , Audição , Animais , Cóclea/metabolismo , Cóclea/ultraestrutura , Cricetinae , Modelos Animais de Doenças , Epilepsia Reflexa/genética , Epilepsia Reflexa/metabolismo , Epilepsia Reflexa/psicologia , Epilepsia Tônico-Clônica/genética , Epilepsia Tônico-Clônica/metabolismo , Epilepsia Tônico-Clônica/psicologia , Ácido Glutâmico/metabolismo , Masculino , Ruído , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
11.
Int J Mol Sci ; 21(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260310

RESUMO

Age-related hearing loss (ARHL) is an irreversible, progressive neurodegenerative disorder and is presently untreatable. Previous studies using animal models have suggested mitochondrial damage and programmed cell death to be involved with ARHL. Thus, we further investigated the pathophysiologic role of mitochondria and necroptosis in aged C57BL/6J male mice. Aged mice (20 months old) exhibited a significant loss of hearing, number of hair cells, neuronal fibers, and synaptic ribbons compared to young mice. Ultrastructural analysis of aged cochleae revealed damaged mitochondria with absent or disorganized cristae. Aged mice also showed significant decrease in cochlear blood flow, and exhibited increase in gene expression of proinflammatory cytokines (IL-1ß, IL-6, and TNF-α), receptor-interacting serine/threonine-protein kinase 1 and 3 (RIPK1 and RIPK3) and the pseudokinase mixed-lineage kinase domain-like (MLKL). Immunofluorescence (IF) assays of cytochrome C oxidase I (COX1) confirmed mitochondrial dysfunction in aged cochleae, which correlated with the degree of mitochondrial morphological damage. IF assays also revealed localization and increased expression of RIPK3 in sensorineural tissues that underwent significant necroptosis (inner and outer hair cells and stria vascularis). Together, our data shows that the aging cochlea exhibits damaged mitochondria, enhanced synthesis of proinflammatory cytokines, and provides new evidence of necroptosis in the aging cochlea in in vivo.


Assuntos
Envelhecimento/fisiologia , Cóclea/ultraestrutura , Perda Auditiva Neurossensorial/patologia , Mitocôndrias/patologia , Animais , Cóclea/irrigação sanguínea , Cóclea/patologia , Citocinas/genética , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva Neurossensorial/genética , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/ultraestrutura , Necroptose , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
12.
Sci Rep ; 10(1): 5877, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245997

RESUMO

Human spiral ganglion (HSG) cell bodies located in the bony cochlea depend on a rich vascular supply to maintain excitability. These neurons are targeted by cochlear implantation (CI) to treat deafness, and their viability is critical to ensure successful clinical outcomes. The blood supply of the HSG is difficult to study due to its helical structure and encasement in hard bone. The objective of this study was to present the first three-dimensional (3D) reconstruction and analysis of the HSG blood supply using synchrotron radiation phase-contrast imaging (SR-PCI) in combination with histological analyses of archival human cochlear sections. Twenty-six human temporal bones underwent SR-PCI. Data were processed using volume-rendering software, and a representative three-dimensional (3D) model was created to allow visualization of the vascular anatomy. Histologic analysis was used to verify the segmentations. Results revealed that the HSG is supplied by radial vascular twigs which are separate from the rest of the inner ear and encased in bone. Unlike with most organs, the arteries and veins in the human cochlea do not follow the same conduits. There is a dual venous outflow and a modiolar arterial supply. This organization may explain why the HSG may endure even in cases of advanced cochlear pathology.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Contraste de Fase/métodos , Gânglio Espiral da Cóclea/irrigação sanguínea , Síncrotrons , Adulto , Cóclea/anatomia & histologia , Cóclea/diagnóstico por imagem , Cóclea/ultraestrutura , Humanos , Gânglio Espiral da Cóclea/anatomia & histologia , Gânglio Espiral da Cóclea/diagnóstico por imagem , Gânglio Espiral da Cóclea/ultraestrutura , Veias/anatomia & histologia , Veias/diagnóstico por imagem , Veias/ultraestrutura
13.
Braz. j. otorhinolaryngol. (Impr.) ; 86(2): 222-227, March-Apr. 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1132576

RESUMO

Abstract Introduction: The use of electron microscopy in the study of the inner ear has allowed us to observe minute details of the hair cells, especially in ototoxicity studies; however, the preparation of this material is a difficult and delicate task. In an attempt to simplify the handling of these materials, two agents, toluidine blue and ethylenediamine tetra-acetic acid were tested, in addition to the elimination of osmium tetroxide during the preparation of albino guinea pig cochleae. We also tested the applicability of these methodologies in an ototoxicity protocol. Objective: To verify the quality of the images obtained with and without the use of ethylenediamine tetra-acetic acid, toluidine blue and osmium tetroxide in the preparation of cochleae of albino guinea pigs for the scanning electron microscopy. Methods: Three groups of cochleae were used. In Group 1, 10 cochleae were prepared with the usual methodology, dissecting the optical capsule without decalcification and using osmium tetroxide as a post-fixative agent. In Group 2, we prepared 10 cochleae decalcified with ethylenediamine tetra-acetic acid, injecting toluidine blue in the endolymphatic space to facilitate the identification of the organ of Corti. In Group 3, we used 4 cochleae of guinea pigs that received 3 doses of cisplatin (7.5 mg/kg, D1-D5-D6), two prepared according to the methodology used in Group 1 and two with that used in Group 2. Scanning electron microscopy images were obtained from the organ of Corti region of the basal turn of each cochlea. Results: The organ of Corti was more easily identified with the use of toluidine blue. The dissection of the cochlea was more accurate in the decalcified cochleae. The quality of the images and the preservation of the organ of Corti obtained with the two methodologies were similar. Conclusion: The proposed modifications resulted in images of similar quality as those observed using the traditional methodology.


Resumo Introdução: O emprego da microscopia eletrônica no estudo da orelha interna permitiu observar detalhes minuciosos das células ciliadas especialmente em estudos de ototoxicidade. Entretanto, o preparo desse material é trabalhoso e delicado. Para simplificar a manipulação desses materiais, testou-se o uso de dois agentes, azul de toluidina e ácido etilenodiamino tetra-acético, além da retirada do tetróxido de ósmio na preparação de cócleas de cobaias albinas. Testamos também a aplicabilidade dessas metodologias em um protocolo de ototoxicidade. Objetivo: Verificar a qualidade das imagens obtidas com e sem o uso de ácido etilenodiamino tetra-acético, azul de toluidina e tetróxido de ósmio na preparação de cócleas de cobaias albinas para a microscopia eletrônica de varredura. Método: Foram utilizados três grupos de cócleas. No Grupo 1 preparou-se 10 cócleas com a metodologia usual, dissecando a cápsula ótica sem descalcificac¸ão e utilizando tetróxido de ósmio como pós-fixador. No Grupo 2 preparamos 10 cócleas descalcificadas com ácido etilenodiamino tetra-acético, injetando azul de toluidina no espac¸o endolinfático para facilitar a identificação do órgão de Corti. No Grupo 3 utilizamos 4 cócleas de cobaias que receberam 3 doses de cisplatina (7,5 mg/kg, D1-D5-D6), duas preparadas com a metodologia do Grupo 1 e duas com a do Grupo 2. Foram obtidas imagens da microscopia eletrônica de varredura da região do órgão de Corti do giro basal de cada cóclea. Resultados: O órgão de Corti foi mais facilmente identificado com o azul de touidina. A dissecção da cóclea foi mais precisa nas cócleas descalcificadas A qualidade das imagens e a preservac¸ão do órgão de Corti obtidas com as duas metodologias foi similar. Conclusão: As modificações propostas resultaram em imagens de qualidade similar as observadas com o uso da metodologia tradicional.


Assuntos
Animais , Feminino , Cisplatino/toxicidade , Cóclea/efeitos dos fármacos , Cóclea/ultraestrutura , Órgão Espiral/efeitos dos fármacos , Órgão Espiral/ultraestrutura , Tetróxido de Ósmio/administração & dosagem , Cloreto de Tolônio/administração & dosagem , Microscopia Eletrônica de Varredura , Ácido Edético/administração & dosagem , Cobaias , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/ultraestrutura
14.
Braz J Otorhinolaryngol ; 86(2): 222-227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30797727

RESUMO

INTRODUCTION: The use of electron microscopy in the study of the inner ear has allowed us to observe minute details of the hair cells, especially in ototoxicity studies; however, the preparation of this material is a difficult and delicate task. In an attempt to simplify the handling of these materials, two agents, toluidine blue and ethylenediamine tetra-acetic acid were tested, in addition to the elimination of osmium tetroxide during the preparation of albino guinea pig cochleae. We also tested the applicability of these methodologies in an ototoxicity protocol. OBJECTIVE: To verify the quality of the images obtained with and without the use of ethylenediamine tetra-acetic acid, toluidine blue and osmium tetroxide in the preparation of cochleae of albino guinea pigs for the scanning electron microscopy. METHODS: Three groups of cochleae were used. In Group 1, 10 cochleae were prepared with the usual methodology, dissecting the optical capsule without decalcification and using osmium tetroxide as a post-fixative agent. In Group 2, we prepared 10 cochleae decalcified with ethylenediamine tetra-acetic acid, injecting toluidine blue in the endolymphatic space to facilitate the identification of the organ of Corti. In Group 3, we used 4 cochleae of guinea pigs that received 3 doses of cisplatin (7.5mg/kg, D1-D5-D6), two prepared according to the methodology used in Group 1 and two with that used in Group 2. Scanning electron microscopy images were obtained from the organ of Corti region of the basal turn of each cochlea. RESULTS: The organ of Corti was more easily identified with the use of toluidine blue. The dissection of the cochlea was more accurate in the decalcified cochleae. The quality of the images and the preservation of the organ of Corti obtained with the two methodologies were similar. CONCLUSION: The proposed modifications resulted in images of similar quality as those observed using the traditional methodology.


Assuntos
Cisplatino/toxicidade , Cóclea/efeitos dos fármacos , Cóclea/ultraestrutura , Animais , Ácido Edético/administração & dosagem , Feminino , Cobaias , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/ultraestrutura , Microscopia Eletrônica de Varredura , Órgão Espiral/efeitos dos fármacos , Órgão Espiral/ultraestrutura , Tetróxido de Ósmio/administração & dosagem , Cloreto de Tolônio/administração & dosagem
15.
Neurosci Lett ; 717: 134686, 2020 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-31838016

RESUMO

The blood-labyrinth barrier (BLB) is a major structure that separates the inner ear from the systemic blood circulation. Many drugs cannot access the inner ear because of their inability to cross the BLB. In the cochlea, the BLB is mainly distributed in the lateral wall. However, the ultrastructure of the cochlear lateral wall, including the distribution of tight junctions (TJs), which are its main component, has not been thoroughly examined in primates. This study investigated the distribution of TJs in the cochlear lateral wall of the common marmoset by performing immunohistochemistry for TJ markers and transmission electron microscopy. As previously reported in rodents, TJs were distributed at the lumenal side of stria marginal cells and basal cells. In outer sulcus cells, which are more developed in primates than in rodents, TJs were distributed at the side with the endolymph but not at the side with the spiral ligament, where many capillaries were located. These findings indicate that drugs and small compounds circulating systemically in the blood can easily access outer sulcus cells, but have a limited ability to enter endolymph. No structural differences were detected between species, indicating that the in vivo distribution of drugs in cochlear lateral wall cells, including outer sulcus cells, in primates can be predicted by performing rodent experiments.


Assuntos
Cóclea/ultraestrutura , Orelha Interna/patologia , Estria Vascular/patologia , Junções Íntimas/patologia , Animais , Feminino , Masculino , Microscopia Eletrônica de Transmissão/métodos , Primatas
16.
J Neurosci Res ; 98(9): 1745-1763, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31762086

RESUMO

The aging cochlea is subjected to a number of pathological changes to play a role in the onset of age-related hearing loss (ARHL). Although ARHL has often been thought of as the result of the loss of hair cells, it is in fact a disorder with a complex etiology, arising from the changes to both the organ of Corti and its supporting structures. In this study, we examine two aging pathologies that have not been studied in detail despite their apparent prevalence; the fusion, elongation, and engulfment of cochlear inner hair cell stereocilia, and the changes that occur to the tectorial membrane (TM), a structure overlying the organ of Corti that modulates its physical properties in response to sound. Our work demonstrates that similar pathological changes occur in these two structures in the aging cochleae of both mice and humans, examines the ultrastructural changes that underlie stereocilial fusion, and identifies the lost TM components that lead to changes in membrane structure. We place these changes into the context of the wider pathology of the aging cochlea, and identify how they may be important in particular for understanding the more subtle hearing pathologies that precede auditory threshold loss in ARHL.


Assuntos
Envelhecimento/fisiologia , Cóclea/patologia , Perda Auditiva/etiologia , Estereocílios/patologia , Membrana Tectorial/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Cóclea/ultraestrutura , Feminino , Células Ciliadas Auditivas , Audição , Humanos , Masculino , Camundongos , Camundongos Endogâmicos CBA , Pessoa de Meia-Idade , Órgão Espiral , Estereocílios/ultraestrutura , Membrana Tectorial/fisiologia , Membrana Tectorial/ultraestrutura
17.
Int J Mol Sci ; 20(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731459

RESUMO

Noise exposure affects the organ of Corti and the lateral wall of the cochlea, including the stria vascularis and spiral ligament. Although the inner ear vasculature and spiral ligament fibrocytes in the lateral wall consist of a significant proportion of cells in the cochlea, relatively little is known regarding their functional significance. In this study, 6-week-old male C57BL/6 mice were exposed to noise trauma to induce transient hearing threshold shift (TTS) or permanent hearing threshold shift (PTS). Compared to mice with TTS, mice with PTS exhibited lower cochlear blood flow and lower vessel diameter in the stria vascularis, accompanied by reduced expression levels of genes involved in vasodilation and increased expression levels of genes related to vasoconstriction. Ultrastructural analyses by transmission electron microscopy revealed that the stria vascularis and spiral ligament fibrocytes were more damaged by PTS than by TTS. Moreover, mice with PTS expressed significantly higher levels of proinflammatory cytokines in the cochlea (e.g., IL-1ß, IL-6, and TNF-α). Overall, our findings suggest that cochlear microcirculation and lateral wall pathologies are differentially modulated by the severity of acoustic trauma and are associated with changes in vasoactive factors and inflammatory responses in the cochlea.


Assuntos
Cóclea , Citocinas/metabolismo , Perda Auditiva Provocada por Ruído , Ferimentos e Lesões , Animais , Velocidade do Fluxo Sanguíneo , Cóclea/irrigação sanguínea , Cóclea/metabolismo , Cóclea/ultraestrutura , Modelos Animais de Doenças , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/patologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Masculino , Camundongos , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , Ferimentos e Lesões/fisiopatologia
18.
J Histochem Cytochem ; 67(11): 845-855, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31510846

RESUMO

Constitutively expressed endothelial nitric oxide synthase (eNOS) is supposed to play a role in noise-induced nitric oxide (NO)-production. It is commonly known that intense noise exposure results in inducible NOS (iNOS) expression and increased NO-production, but knowledge about a contribution of the eNOS isoform is still lacking. Effects of noise exposure on eNOS immunolabeling were determined in male guinea pigs (n=24). For light microscopic analysis, 11 animals were exposed to 90 dB for 1 hr and 6 animals were used as controls. After exposure, eNOS immunostaining was performed on paraffin sections, and the staining intensities were quantified for 4 cochlear regions. For electron microscopic analysis, 2 animals were exposed for 2 hr to 90 dB and 5 animals were used as controls. The intensity of eNOS immunolabeling was found to be already comprehensively increased 1 hr after noise exposure to 90 dB. At the ultrastructural level, a clear increase in eNOS immunolabeling was found in microtubules-rich areas of cochlear cuticular structures. Hence, our findings indicate that the reticular lamina forming the endolymph-perilymph barrier at the apical side of the organ of Corti is involved in a fast intrinsic otoprotective mechanism of the cochlea.


Assuntos
Cóclea/metabolismo , Cobaias/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ruído/efeitos adversos , Animais , Cóclea/ultraestrutura , Perda Auditiva Provocada por Ruído/metabolismo , Imuno-Histoquímica , Masculino , Óxido Nítrico Sintase Tipo III/análise
19.
Ups J Med Sci ; 124(3): 168-179, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31460814

RESUMO

Background: For the first time the expression of the ion transport protein sodium/potassium-ATPase and its isoforms was analyzed in the human cochlea using light- and confocal microscopy as well as super-resolution structured illumination microscopy. It may increase our understanding of its role in the propagation and processing of action potentials in the human auditory nerve and how electric nerve responses are elicited from auditory prostheses. Material and methods: Archival human cochlear sections were obtained from trans-cochlear surgeries. Antibodies against the Na/K-ATPase ß1 isoform together with α1 and α3 were used for immunohistochemistry. An algorithm was applied to assess the expression in various domains. Results: Na/K ATPase ß1 subunit was expressed, mostly combined with the α1 isoform. Neurons expressed the ß1 subunit combined with α3, while satellite glial cells expressed the α1 isoform without recognized association with ß1. Types I and II spiral ganglion neurons and efferent fibers expressed the Na/K-ATPase α3 subunit. Inner hair cells, nerve fibers underneath, and efferent and afferent fibers in the organ of Corti also expressed α1. The highest activity of Na/K-ATPase ß1 was at the inner hair cell/nerve junction and spiral prominence. Conclusion: The human auditory nerve displays distinct morphologic features represented in its molecular expression. It was found that electric signals generated via hair cells may not go uninterrupted across the spiral ganglion, but are locally processed. This may be related to particular filtering properties in the human acoustic pathway.


Assuntos
Cóclea/metabolismo , Implante Coclear/métodos , Nervo Coclear/fisiologia , Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão/métodos , ATPase Trocadora de Sódio-Potássio/metabolismo , Estimulação Acústica , Animais , Cóclea/patologia , Cóclea/ultraestrutura , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Camundongos
20.
Biochem Biophys Res Commun ; 518(2): 357-361, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31421828

RESUMO

Connexin26 (Cx26) and Cx30 are the predominant connexin subtypes found in the cochlea. They play an essential role in the cochlear functions. However, most studies use mice and the data on the cochlear expression profiles of the two Cxs in higher animals (e.g., humans) are scarce. Studies using the cochleae from non-human primate other than mice may provide information needed to narrow this gap. Here we studied cellular distributions of Cx26 and Cx30 in the adult monkey and guinea pig cochleae by immunofluorescent labeling and confocal microscopy observations. We detected Cx26 and Cx30 expressions in the type I, II& V fibrocytes in the spiral ligament, fibrocytes of the spiral limbus, in the supporting cells of organ of Corti, inner and outer sulcus cells, and in the basal cells of the stria vascularis. Both Cx26 and Cx30 were not detected in hair cells, in mesenchymal cells under the basilar membrane and cells lining the scala vestibule. Cells of the Reissner's membrane and spiral ganglion neurons are also negative. These findings demonstrate that cochlear expressions of Cx26 and Cx30 in the adult mouse, guinea pig and non-human primate have a common cellular pattern.


Assuntos
Cóclea/ultraestrutura , Conexina 26/análise , Conexina 30/análise , Macaca mulatta , Animais , Cóclea/química , Junções Comunicantes/química , Junções Comunicantes/ultraestrutura , Cobaias , Macaca mulatta/metabolismo , Masculino , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...